Reg. No. :

Question Paper Code : 10396

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2012.

Fourth Semester

Common to ECE and Bio Medical Engineering

MA 2261 / 181403/ MA 45/ MA 1253 / 10177 PR 401 / 080380009 — PROBABILITY AND RANDOM PROCESSES

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

1. Find *C*, if
$$P[X = n] = C\left(\frac{2}{3}\right)^n$$
; $n = 1, 2, ...$

- 2. The probability that a man shooting a target is 1/4. How many times must he fire so that the probability of his hitting the target atleast once is more than 2/3?
- 3. Let X and Y be two discrete random variables with joint probability mass function

$$P(X = x, Y = y) = \begin{cases} \frac{1}{18}(2x + y), & x = 1,2 \text{ and } y = 1,2 \\ 0, & \text{otherwise.} \end{cases}$$

Find the marginal probability mass functions of X and Y.

- 4. State Central Limit Theorem for iid random variables.
- 5. Define wide-sense stationary random process.
- 6. If $\{X(t)\}$ is a normal process with $\mu(t) = 10$ and $C(t_1, t_2) = 16e^{-|t_1-t_2|}$ find the variance of X(10) X(6).
- 7. The autocorrelation function of a stationary random process is $R(\tau) = 16 + \frac{9}{1+6\tau^2}$. Find the mean and variance of the process.

8.

- Prove that $S_{xy}(\omega) = S_{yx}(-\omega)$.
- 9. Prove that the system $y(t) = \int_{-\infty}^{\infty} h(u) X(t-u) du$ is a linear time-invariant system.
- 10. What is unit impulse response of a system? Why is it called so?

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) A random variable X has the following probability distribution.

Find :

(1) The value of K

(2) P(1.5 < X < 4.5 | X > 2) and

- (3) The smallest value of *n* for which $P(X \le n) > \frac{1}{2}$.
- (ii) Find the M.G.F. of the random variable X having the probability density function

$$f(x) = \begin{cases} \frac{x}{4}e^{\frac{-x}{2}}, & x > 0\\ 0, & \text{elsewhere.} \end{cases}$$

Also deduce the first four moments about the origin.

(8)

(8)

Or 🖞

- (b) (
- (i) Given that X is distributed normally, if P[X < 45] = 0.31 and P[X > 64] = 0.08, find the mean and standard deviation of the distribution.
 (8)
 - (ii) The time in hours required to repair a machine is exponentially distributed with parameter $\lambda = 1/2$
 - (1) What is the probability that the repair time exceeds 2 hours?
 - What is the conditional probability that a repair takes atleast 10 hours given that its duration exceeds 9 hours? (8)
- 12. (a)
- (i) The joint probability density function of the random variable (X, Y) is given by $f(x, y) = Kxye^{-(x^2+y^2)}, x > 0, y > 0.$

Find the value of K and Cov (X, Y). Are X and Y independent? (8)

(ii) If X and Y are uncorrelated random variables with variances 16 and 9. Find the correlation co-efficient between X + Y and X - Y. (8)

Or

(i) Let (X, Y) be a two dimensional random variable and the probability density function be given by

 $f(x, y) = x + y, \ 0 \le x, \ y \le 1$

Find the p.d.f of U = XY.

- (ii) Let $X_1, X_2, ..., X_n$ be Poisson variates with parameter $\lambda = 2$ and $S_n = X_1 + X_2 + ... X_n$ where n = 75. Find $P[120 \le S_n \le 160]$ using central limit theorem. (8)
- 13. (a)

(i)

(b)

If $\{X(t)\}$ is a WSS process with autocorrelation $R(\tau) = Ae^{-\alpha|\tau|}$, determine the second order moment of the $RV\{X(8) - X(5)\}$. (8)

(ii) If the WSS process $\{X(t)\}$ is given by $X(t) = 10\cos(100t + \theta)$, where θ is uniformly distributed over $(-\pi, \pi)$, prove that $\{X(t)\}$ is correlation ergodic. (8)

Or

- (b) (i) If customers arrive at a counter in accordance with a Poisson process with a mean rate of 2 per minute, find the probability that the interval between 2 consecutive arrivals is
 - (1) more than 1 minute
 - (2) between 1 minute and 2 minute and
 - $(3) \quad 4 \text{ min or less.} \tag{8}$
 - (ii) Suppose that X(t) is a Gaussian process with $\mu_x = 2$, $R_{xx}(\tau) = 5e^{-0.2|\tau|}$. Find the probability that $X(4) \le 1$. (8)
- 14. (a) (i) A stationary random process X(t) with mean 2 has the auto correlation function $R_{XX}(\tau) = 4 + e^{\frac{|\tau|}{10}}$. Find the mean and variance of $Y = \int_{0}^{1} X(t) dt$. (8)
 - (ii) Find the power spectral density function whose autocorrelation function is given by $R_{XX}(\tau) = \frac{A^2}{2} \cos(\omega_0 \tau)$. (8)

Or

3

10396

(8)

- (b) (i)
- The cross-correlation function of two processes X(t) and Y(t) is given by $R_{XY}(t, t+\tau) = \frac{AB}{2} \{ \sin(\omega_o \tau) + \cos \omega_o [(2t+\tau)] \}$ where A, B and ω_0 are constants. Find the cross-power spectrum $S_{XY}(\omega)$. (8)
- Let X(t) and Y(t) be both zero-mean and WSS random processes (ii)Consider the random process Z(t) defined by Z(t) = X(t) + Y(t). Find
 - The Auto correlation function and the power spectrum of Z(t)(1)if X(t) and Y(t) are jointly WSS.
 - The power spectrum of Z(t) if X(t) and Y(t) are orthogonal. (2)

15. (a) (i)

(ii)

- Consider a system with transfer function $\frac{1}{1+i\omega}$. An input signal with autocorrelation function $m\delta(\tau) + m^2$ is fed as input to the system. Find the mean and mean-square value of the output. (8)A stationary random process X(t) having the autocorrelation function $R_{XX}(\tau) = A\delta(\tau)$ is applied to a linear system at time t = 0
- where $f(\tau)$ represent the impulse function. The linear system has the impulse response of $h(t) = e^{-bt}u(t)$ where u(t) represents the unit step function. Find $R_{YY}(\tau)$. Also find the mean and variance of Y(t).

Or

4

- (b) · (i)
- If $\{X(t)\}$ is a WSS process and if $Y(t) = \int_{-\infty}^{\infty} h(\xi) X(t-\xi) d\xi$ then prove that (1) $R_{XY}(\tau) = R_{XX}(\tau) * h(\tau)$ where * stands for convolution.
 - (2) $S_{XY}(\omega) = S_{XX}(\omega)H^*(\omega).$ (8)

If $\{N(t)\}$ is a band limited white noise centered at a carrier (ii)

frequency ω_0 such that $S_{NN}(\omega) = \begin{cases} \frac{N_0}{2}, \text{ for } |\omega - \omega_0| < \omega_B \end{cases}$ Find the $0, \quad \text{elsewhere}$

autocorrelation of $\{N(t)\}$.

10396

(8)